3(5^2x+4)=75

Simple and best practice solution for 3(5^2x+4)=75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(5^2x+4)=75 equation:



3(5^2x+4)=75
We move all terms to the left:
3(5^2x+4)-(75)=0
We multiply parentheses
15x^2+12-75=0
We add all the numbers together, and all the variables
15x^2-63=0
a = 15; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·15·(-63)
Δ = 3780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3780}=\sqrt{36*105}=\sqrt{36}*\sqrt{105}=6\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{105}}{2*15}=\frac{0-6\sqrt{105}}{30} =-\frac{6\sqrt{105}}{30} =-\frac{\sqrt{105}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{105}}{2*15}=\frac{0+6\sqrt{105}}{30} =\frac{6\sqrt{105}}{30} =\frac{\sqrt{105}}{5} $

See similar equations:

| 6x=(3x+24) | | 11x+4(-6)=-5 | | 1/x=2/x+6 | | 14+y/11=17 | | F-9=-2f+3(f-2) | | C=(54.95+0.06d)+10 | | 5=16/3+x | | 2(3-4x)=40 | | 3x-8=-x+4(x-2 | | r=1.8E^-4 | | 48-x=90 | | (n+7)+(198-5n)=(5n+37) | | X+2y×1=9 | | 8(5n-12=) | | 6x+3=10+2x | | 2(2x-10)=3(2x-10) | | -5+7+2k+-3k=k-8 | | 5(6-3x)=2x-6 | | 1/2(x+8)=5(x-1) | | (3+v)(3v+1)=0 | | 2x-32=68 | | 2x/5+1500=x | | 3^2b=49 | | 9000+0,1y=X | | x-2x/5=1500 | | Y^2+13y-5=0 | | q/5=155 | | a^2/3=16 | | x=2x+132 | | 3x+5=-2X=-2 | | x=132+2x | | 3t-16=4t-13 |

Equations solver categories